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Multilayer Cooperative Sequential Adsorption
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Cooperative sequential adsorption is here extended to multilayer coverages. We
discuss two different growth rules with cooperativity either restricted to only the
first layer of coverage or applied in all layers. The unrestricted variant is con-
sidered in the case where lateral growth dominates over the nucleation of
terraces. The limit of completely suppressed nucleation corresponds to a
morphological transition to a flat interface from one governed by the Kardar�
Parisi�Zhang equation. With the restricted growth rule we find interesting
behavior resulting from a competition between lateral growth at the first layer
and growth on the top of nucleated islands. There is an intermediate regime
between random deposition at the submonolayer coverage and asymptotic ran-
dom deposition behavior. In this regime the kinetic roughening can be studied
by applying sequential adsorption rate equations for cluster lengths in the first
layer, with an additional geometric argument.

KEY WORDS: Cooperative adsorption; kinetic roughening.

I. INTRODUCTION

Random sequential adsorption (RSA) and its close cousin cooperative
sequential adsorption (CSA) have attracted some interest during the recent
years as simple models of clustering.(1) One particular property of RSA and
CSA models is that they can be formulated in terms of rate equations.
These turn out to be exactly solvable in one spatial dimension due to the
Markovian dynamics and the shielding property of empty sites.(2)
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In the CSA model particles are deposited on a substrate so that the
single-site coverage does not exceed unity. The fate of all particles depends
on the neighborhood of the chosen destination. Both repulsive and attractive
nearest-neighbor (NN) interactions can be considered. There is an apparent
similarity��for the one-dimensional (1D) case��to polymer chain aggrega-
tion which was one of the early motives for the study of the CSA model.(3)

In this paper we discuss ways of extending the CSA model to multi-
layer growth (Multilayer CSA, MCSA). The motivation is based on noting
the similarity between CSA-dynamics and the growth of surfaces by deposi-
tion.(4) MCSA might correspond to a solid interface that is formed by
sticking of atoms from a gas phase; the sticking probability then depends
among others on the local chemical environment of the adsorption site.
The generalization of CSA to multilayer growth can naturally be done in
several ways. We discuss two possible choices for the local growth rules
corresponding to random deposition and the Kardar�Parisi�Zhang univer-
sality classes, respectively.

We introduce anisotropic and isotropic MCSA, which differ in
whether the growth is cooperative only at the first layer of particles or, in
general, at all times. There are variants of RSA��accelerated RSA��that
have been developed to model chemisorption�physisorption phenomena,
that are closely related to these ideas.(5)

The isotropic MCSA turns out to be similar to the polynuclear growth
model(6) and to the square lattice variant of the Gates�Westcott model of
polymer crystallization.(7, 8) In Section III, we discuss the therefore unsur-
prising fact that it belongs to the Kardar�Parisi�Zhang (KPZ) universality
class.(9) There is a morphology�pinning transition that takes place when the
attractive interaction between incoming particles and pre-existing steps
wins completely over nucleation events at flat terraces. By studying the step
densities in the steady state we are able to analyze the KPZ-nonlinearity
near the transition.

The anisotropic case leads to a complicated version of random deposi-
tion-type growth with initial correlations, which we analyze by utilizing 1D
rate equation theory. Using an extension thereof allows us to map the CSA
timescale to that of kinetic growth, since in multilayer adsorption the con-
cept of coverage differs from the original one. We combine geometric
arguments with the rate equation solution for the cluster length distribu-
tion to study kinetic roughening in the regime where the coverage is small,
but the height of a typical cluster is non-trivial (larger than unity). This
phase shows interesting roughening properties that interpolate between the
asymptotic, trivial random deposition limit and the likewise simple early
stage, which is as well in the random deposition class of dynamics.
Section V finishes the paper with conclusions.
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II. MULTILAYER CSA��DEFINITIONS OF TWO MODELS

There are several ways of generalizing the CSA to multilayer growth.
In MCSA the growth occurs by adding particles either on the substrate or
on the top of previously deposited particles and the cooperativity of the
local growth rules determines the universality class of the resulting inter-
face. Here we consider the two natural choices for the rules leading to
random deposition and KPZ type interfaces. The models are defined on a
one-dimensional lattice of size L but the generalization to higher dimen-
sions is straightforward.

In the isotropic MCSA the growth is cooperative at all layers and the
dynamics equals to the growth rates

r={q,
1,

no NNs in the lateral direction
otherwise

(1)

With this choice of growth rules MCSA becomes a variable-rate deposition
model with the local deposition rate being dependent on the local deposit
structure. Figure 1a illustrates the isotropic growth rules.

The isotropic MCSA is identical to the discretized polynuclear growth
model(6) and similar to the so-called Gates�Westcott model of polymer
crystallization(7, 8) on a square lattice. It is also a simplification of the
model studied earlier by Amar and Family, (10) without the restricted solid-
on-solid (RSOS) condition which restricts the height difference between
nearest neighbors to at most one. Their model was found to be of the
Kardar�Parisi�Zhang universality class in 2+1 dimensions.

In the random deposition multilayer cooperative sequential adsorption
(RD-MCSA) the sticking of particles deposited on the substrate with no
lateral nearest neighbors is inhibited in respect to particles landing else-
where as illustrated in Fig. 1b. To be precise, the dynamics equates to the
growth rates

r={q,
1,

no NNs 6 particle deposited on the substrate
otherwise, esp. for all particles in higher layers

(2)

Physically, one could imagine this particular choice of rules to
correspond to a deposit of material A being formed on a substrate of
material B so that the sticking of A atoms on the substrate is inhibited with
no neighbors of the same type. One could also use different rates ri depend-
ing on the exact number of nearest neighbors. Our choice is a simplifica-
tion. We also work within the range of q�1, implying inhibition of cluster
nucleation with respect to growth. Note in particular that one could also
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Fig. 1. (a) The isotropic and (b) the anisotropic growth rules for MCSA. The growth rate
for unlabeled sites is unity and for labeled ones q.

consider other kinds of dynamics for particles on the higher layers. For
example one could allow particles to diffuse on the top of islands that have
already formed on the substrate.

In MCSA a particle or deposition event can be rejected and thus there
are two natural timescales: that of coverage, measuring particles deposited
per site, and that of deposition trials. These are not always directly related
as is trivial to see. In studies of surface roughening time is usually measured
using the coverage. For RD-MCSA, however, the interesting phenomena
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happen at low coverages and the timescale of trials turns out to be more
convenient for analytical purposes.

III. ISOTROPIC MCSA

The polynuclear growth model that is a close cousin of the isotropic
MCSA belongs to the KPZ universality class.(11, 12) We checked the
standard growth exponent ; and the roughness exponent : for the isotropic
MCSA by numerical simulations. The height�height difference correlation
function in the saturated regime and the surface width yield ;=0.32\0.02,
0.32\0.02, and 0.31\0.02, and :=0.50\0.02, 0.49\0.02 and 0.44\0.02
for q=0.001, 0.01, and 0.1, respectively. System size L=105 and data are
averaged over 50 samples. The values are consistent with the KPZ-
exponents ;=1�3 and :=1�2.

The q � qc=0 limit of the MCSA corresponds to a morphology�pinning
transition: starting from an arbitrary configuration the surface equilibrates
via domain wall�step annihilation till a steady state with v=0 is reached.
Here v is the average velocity of the interface defined as the number of
particles in the system divided by the number of deposition attempts. Close
but above the critical point we have that vt(q&qc)

%, where % defines the
velocity exponent.(13) Similar considerations apply to growth processes in
which adsorption competes with desorption.(14�16) It would be interesting
to see how arbitrary initial configurations relax in the limit q � 0.(12, 17, 18)

We shall, however, discuss below the morphology transition near q=0.
Simulations show that the step density saturates rapidly to a constant

value. Thus the average terrace length l� can be estimated in the steady state
by considering a lattice gas model, in which steps nucleate in pairs in ran-
dom positions and move apart with velocity V, which can be chosen to be
one in our case. This approach is closely related to the analysis of the
polynuclear growth model in one dimension.(6) Define l(x) and r(x) to be
the densities of steps moving to the left and right, respectively, in the con-
tinuum limit where x denotes the spatial position. These densities satisfy
the equations(6, 19, 20)

�l
�t

=q+
�l
�x

&2lr++ (3)

�r
�t

=q&
�r
�x

&2lr++ (4)

where + is a noise term with (+)=0 and the product form of the annihila-
tion terms reflects the fact that steps that annihilate each other are
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uncorrelated. Let the total step density be n=r+l and choose l=r+m for
a tilted surface with average tilt m which results in

�(n)
�t

=2q&(n) 2+m2 (5)

Solving for l� =(n) &1 in the steady state gives

l� (q, m)=(2q+m2)&1�2
tq&1�2 (6)

Furthermore, the velocity is related to the average terrace length as
v=q+(1&q) l� &1=q+(1&q) - 2q+m2

tq1�2, which gives %=1�2. This
agrees with the solutions for the steady state of a corresponding spin chain-
like model(8) and the Sine�Gordon chain.(12)

In the limit q � 1 we expect the nonlinearity * to vanish since at q=1
the MCSA has a cross-over to the random deposition model. In the
opposite limit q � 0 the interface becomes pinned and analogously to the
velocity * diverges as q&,.(21, 12, 17) The behavior can be analyzed in a
standard fashion by using a screw boundary condition h(L)=h(0)+Lm in
the simulations.(4, 22) For small enough tilts the interface growth velocity
depends quadratically on m. Thus expanding v around m=0 and identify-
ing the coefficient of the second order term with *�2 leads to conclusion
that *=(1&q)�- 2qtq&1�2

tl� (q, 0) as q � 0 and thus ,=1�2.
Figure 2 compares the predictions of the lattice gas theory with

numerical simulations. It demonstrates that by using the scaling exponents
derived, %=,=1�2, we are able to collapse the numerical data into a single
master curve. The inset includes both the theoretical prediction and simula-
tion values for * as a function of q. Apart from a constant offset the lattice
gas result and the simulations for the growth velocity scale similarly with
q (%=1�2).

Note finally the differences between isotropic MCSA and earlier
RSOS-growth models, for instance that by Amar and Family.(10) First, the
isotropic MCSA can be analyzed in the small q limit using mean field
arguments since there is no height difference restriction. Also, in our case
* should always be positive, since even an excess of left�right steps created
by screw boundary conditions does not inhibit step nucleation.

IV. RANDOM DEPOSITION MCSA

A. Rate Equations for Cluster Lengths

In terms of standard growth models the anisotropic dynamics
[Eq. (2)] translates into random deposition with correlations created by
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Fig. 2. A data collapse of the growth velocity data for various tilts m and for q=0.001 (g),
0.00075 (V), 0.0005 (m), 0.00025 (_), and 0.0001 (s) using the theoretical values for the
exponents %=,=1�2. The inset shows the numerical values for * and the theoretical curve
(1&q)�- 2q.

the first layer deposition dynamics that takes place on the substrate.
Islands are free to grow in the transverse direction, but their coalescence
takes place at a different rate compared to normal random deposition
because of the difference in the growth rate for the first layer. This gives rise
to a non-trivial cross-over phenomenon that persists as long as the sub-
strate is not completely covered.

In the following we give a brief overview on the rate equation method
which has turned out to be an efficient method for analyzing the CSA. The
purpose is to show how the CSA rate equations can be used for analyzing
the interface properties by relating the coverage to the deposition timescale
and also present the appropriate approximations needed for the analysis in
Section IV C. We concentrate on the early stages of cluster nucleation and
growth of a partially filled first layer, in which case it is possible to study
the kinetic roughening of the growing interface by combining the rate
equation solution with geometric arguments for the shape of clusters.
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Let ns (n$s) denote the probability of finding a cluster of filled (empty)
sites of length s per lattice site. The number of particles per lattice site that
one tries to deposit in the system is {. This parameterization of time by
deposition trials is a key point in the calculations, which enables one to
solve the rate equations. On the other hand, in the studies of interface
roughening time is measured using the coverage, which can be solved once
the number of rejected particles as a function of { is known. Although { is
simply proportional to real time, we prefer to use the symbol t for coverage
as usually done in interface studies. Below, we derive a relation between the
two timescales. This is because we are interested in the growth properties
(e.g., the growth exponent ;) as a function of the coverage, not as a func-
tion of {. Note that the analysis differs from standard treatments of CSA
since the single site coverage is allowed to exceed unity and the growth
takes place in 1+1D. Thus a cluster of length s in general consists of more
particles than just s.

In the thermodynamic limit the rate equations read(23)

�n1

�{
=q :

�

s=1

sn$s+2&2n1 (7)

�nk

�{
=2nk&1 \1&

n$1
$ ++n$1 :

k&2

s=1

nsnk&s&1

$2 &2nk (8)

�n$1
�{

=2n$2+2q :
�

s=3

n$s&n$1 (9)

�n$k
�{

=2n$k+1+2q :
�

s=k+2

n$s&2n$k&(k&2) qn$k (10)

where k>2, $=�s n$s=�s ns , and ns and n$s fulfill the relations

:
�

s=1

sns=p (11)

:
�

s=1

sns+ :
�

s=1

sn$s=1 (12)

where p is the fraction of filled sites in the first layer. The number of
rejected particles R({) can be obtained with R(0)=0 from

�R
�{

=(1&q) :
�

s=1

sn$s+2 (13)
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The length distribution of empty clusters needed in equation (13) can
be solved exactly(24)

n$1({)=2(1& p0) e&{ |
{

0
ex(1&e&qx)(eqx&1+q) `(x) dx (14)

n$k({)=(1& p0) e(3&k) q{(1&e&q{)2 `({) (15)

where p0 is the fraction of occupied sites in the beginning and `(x)=
exp[2(1&1�q)(e&qx+qx&1)&3qx]. Inserting the solutions (14) and (15)
to equation (13) gives

R({)=(1& p0)(1&q) |
{

0
`(x) dx (16)

resulting in an exact relation between the time { and the coverage t({)=
{&R({). By writing and solving the rate equations as a function of { and
regarding it only as a parameter simplifying the calculations, and using
equation (16) it is possible to get the cluster length distribution as a func-
tion of coverage, too.

A formal solution of the length distribution of filled clusters is also
possible but the expressions become very complicated even for small values
of k(23, 1) thus prohibiting even numerical evaluation. To study the interface
roughening in the non-trivial small coverage limit we have to approximate
nk . When both q and p are small the coalescence of clusters is negligible
and we make a rough approximation that clusters do not coalesce at all,
i.e., n$1({)=0, {�0. This allows us to write equations (7) and (8) in matrix
form as

�n({)
�{

=Qn({)+q({) (17)

where n({)=[n1({) n2({) n3({) } } } ]T, Qij=2($i+1, j&$i, i ), q({)=[q`({) 0 0
} } } ]T, and $ i, j is the Kronecker delta. The solution of equation (17) is

n({)=e{Q _|
{

0
e&xQq(x) dx+n(0)& (18)

which can be written out as

nk({)=e&2{ :
k

i=1

(2{)k&i

(k&i)! _ni (0)+
(&2)i&1

(i&1)!
q |

{

0
x i&1e2x`(x) dx& (19)

273Multilayer Cooperative Sequential Adsorption



We would like to know p({), (n({)) and (n( p)) , where (n) stands
for the average cluster length. The first one can be obtained with the help
of equations (11), (12) and (15) exactly as

p({)=1&n$1({)&(1& p0)(2eq{&1) `({) (20)

where n$1({) is given by equation (14). In order to calculate (n({)) we use

p({)= :
�

s=1

ns({)(n) #(n0+Na&Nc)(n) (21)

which gives

(n({))=
1&n$1({)&(1& p0)(2eq{&1) `({)

n0+Na({)&Nc({)
(22)

where n0=��
s=1 ns(0) and Na (Nc) is the average number of new

(coalesced) clusters. For Na({) we get almost the same differential equation
as for R({) and Na({)=qR({)�(1&q).

The simplest way to calculate the number of coalesced clusters Nc is
to modify the equations (9) and (10) so that clusters can not coalesce.
In this case we get for isolated empty clusters by omitting the term n$1 from
Eq. (9)

n~ $1({)=2(1& p0) |
{

0
(1&e&qx)(eqx&1+q) `(x) dx (23)

and the number of coalesced clusters can be calculated as Nc({)=
n~ $1({)&n$1({), which completes the solution (22). We were not able to invert
equation (20) for {( p) and thus calculate (n( p)) analytically, but equa-
tions (20) and (22) implicitly give the solution just using { as a parameter.

B. Behavior of Cluster Growth

Figure 3 shows the number of rejected particles per lattice site as a
function of the actual coverage t={&R({). Simulations confirm the
theoretical result [Eq. (16)] and in particular show that there is a cross-
over coverage above which the growth velocity becomes constant. This
coverage decreases with q. Figure 4 and its inset discuss the average length
of a cluster (n(t)). It is interesting to note that the average mass per
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Fig. 3. The number of rejected particles per site (R) as a function of coverage for q=0.1
(m), 0.01 (_), 0.005 (g), 0.001 (h), 0.0005 (+), and 0.0001 (s) from simulations. The lines
are analytical results from Eq. (16).

Fig. 4. The average cluster length (n) vs. the coverage t for the same q-values as in Fig. 3.
The inset shows the average cluster length vs. the fraction of the substrate still unoccupied by
deposited particles (1& p). In both figures the solid lines are theoretical values from equa-
tions (20) and (22).
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cluster is for small coverages largest for small q whereas the opposite
becomes the case once the cluster length diverges. The inset shows in addi-
tion that the cluster length scales with the fraction of the substrate covered
with the deposit, p, (in the sense of percolation theory) as expected close
to the critical point of 1D site percolation: (n) t(1& p)&1.(25)

C. Surface Roughness in RD-MCSA

The expected scaling of the interface roughness in RD-MCSA is a
combination of early time effects when the anisotropic growth rules still
play a role and late time random deposition behavior. Figure 5 shows two

Fig. 5. Two different surface configurations for RD-MCSA at the time when the substrate
is just fully covered: (a) q=0.001, tr57 and (b) q=0.0001, tr109. System size L=5000.
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examples of how the surface morphology looks like at late times, in the
random deposition regime but with correlations from the initial phase. As
t � � these effects vanish.

For small enough t such ``hat-like'' morphologies are however impor-
tant with respect to the surface roughening. It is easy to see that the RD-
MCSA growth rules amount to that a single cluster grows in a statistically
homogeneous way so that the lateral and transverse growth velocities are
the same. The complications arise from cluster coalescence (see Fig. 5b).

We now utilize the fact that for small q and p a single cluster has a
generic shape of a triangle, whose height on the average is half of its width.
Using this we can relate the density of heights to cluster lengths as

hk({)= 1
2 n2k&2({)+n2k&1({)+ 3

2n2k({)+2 :
�

s=2k+1

ns({) (24)

and calculate the first and second moments numerically from Eq. (24) as a
function of { using Eq. (19). Thus we obtain the surface width w(t({))=
- (h(t)2) &(h(t)) 2 using { again as an implicit parameter. The simula-
tions show that the growth exponent ; characterizing the surface width in
the early time regime (wtt ;) is not a constant. It has an approximate
value that grows from 0.5 to approximately 0.6 during the formation of the
first few layers. This can be compared with the value that would result from
the single-cluster dynamics (;� =1). The difference between ;� and the real
; is, similarly to the change in the exponent, due to the competition
between the random deposition like nucleation events and the cooperative
growth of the previously nucleated islands. Note that the (h)<<1
behavior is just typical of standard random deposition: there are no com-
plications as all the clusters have hj=0, j>1. The solution of the surface
width from Eq. (24) reproduces the numerical work (Fig. 6).

V. CONCLUSIONS

The aim of this paper has been to discuss the extensions of monolayer
cooperative sequential adsorption to multilayer growth. We have studied
two different cases, corresponding to analogues of the Kardar�Parisi�
Zhang and random deposition universality classes, respectively. In general
both of these growth models imply that the local growth rate depends on
the neighborhood of the site considered.

In the isotropic MCSA formulation the growth rules are of the KPZ
universality class. Nevertheless, there are interesting details in the strongly
inhibitory regime, close to q=0. By studying the growth dynamics in a
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Fig. 6. Early-time surface roughening in the RD-MCSA. Numerical data ( v ) and analytical
result (m) for the surface width for q=0.001. The solid and dash-dotted lines have slopes 1�2
and 0.63, respectively, and are guides for the eye.

lattice gas formulation for steps, one can derive the KPZ-nonlinearity * as
a function of q, the growth parameter. This allows to find the ``depinning''-
type morphology transition exponent in the neighborhood of q=0 for *,
which, as well as the velocity exponent %, attains the value of 1�2. The result
is related to polynuclear growth, the dynamics of driven Sine�Gordon
chains, (12) and traffic models. Indeed, the isotropic MCSA maps to a
traffic model�driven diffusive system with three kinds of particles (holes,
``positive'' and ``negative'' charges).

More interestingly, the RD-MCSA has a cross-over phase to the
standard random deposition problem. This is entirely governed by the early
stage CSA dynamics. We have used standard CSA theory to account for
the formation statistics of clusters in the 1+1D case, which can be treated
analytically. Relating the timescale of the trials in the CSA formulation to
the usual coverage based timescale in the surface roughening allows a
discussion of the early-time roughening before the random deposition-kind
behavior sets in. To our knowledge, this is the only model which shows
re-entrant behavior with three phases: early random deposition-like
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roughening, a cross-over phase with non-trivial properties, and final
random deposition-class characteristics. An interesting extension would be
to consider other choices for the dynamics in the higher layers. This would
change the average morphology of individual clusters��for the RD-MCSA
the mean shape is that of a triangle��but might keep the problem still
analytically tractable.

It would be interesting to study the MCSA in the same limits in the
2+1 dimensional case. In the anisotropic formulation it is easy to see that
at low q the model would give rise to a ``fattening'' percolation cluster: for
initial stages of growth the deposit has the 2D projection of a CSA percola-
tion cluster, (26, 27) the voids inside which would be filled slowly compared
to transverse growth. The actual growth dynamics are however related to
the poorly-understood question of shielding configurations in normal mul-
tidimensional CSA and thus analytic progress would seem prohibitive. In
the limit in which a small fraction of the substrate has been covered it
might be possible to utilize polynuclear growth-type continuum limit
ideas.(28) In 2+1D it is also possible that using different growth rates for
sites with different coordination numbers might give rise to interesting
phenomena, as one can tune this to e.g., change the surface tension of the
droplets on the surface.

For isotropic MCSA the 2+1D-limit has already been explored by
Amar and coworkers in the RSOS-type case. Nevertheless, the pinning
transition close to q=0 exists in arbitrary dimensions as well as the cross-
over effects close to q=1. As the morphology of islands in greater dimen-
sions than 1+1 becomes much more complicated it would seem less likely
that one could hope to find the scaling exponents by similar simple
arguments as in 1+1D. Indeed, the existence of stationary states of growth
is as such a very complicated question, as shown recently by Gates and
Westcott for the 2+1D case.(29)

ACKNOWLEDGMENT

We thank J. Kerte� sz for comments about the manuscript.

REFERENCES

1. J. W. Evans, Rev. Mod. Phys. 65:1281 (1993).
2. J. W. Evans, D. K. Hoffmann, and D. R. Burgess, J. Chem. Phys. 80:936 (1984).
3. J. B. Keller, J. Chem. Phys. 37:2584 (1962); J. B. Keller, J. Chem. Phys. 38:325 (1963);

T. Alfrey, Jr. and W. G. Lloyd, J. Chem. Phys. 38:318 (1963); C. B. Arends, J. Chem. Phys.
38:322 (1963).

4. A.-L. Baraba� si and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge Univer-
sity Press, 1995).

279Multilayer Cooperative Sequential Adsorption



5. G. J. Rodgers and J. A. N. Filipe, J. Phys. A: Math. Gen. 30:3449 (1997).
6. W. van Saarloos and G. Gilmer, Phys. Rev. B 33:4927 (1986).
7. D. J. Gates and M. Westcott, Proc. R. Soc. Lond. A 416:443 (1988).
8. D. J. Gates and M. Westcott, Proc. R. Soc. Lond. A 416:463 (1988).
9. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986).

10. J. G. Amar and F. Family, Phys. Rev. Lett. 64:543 (1990).
11. J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Rev. A 45:638 (1992).
12. J. Krug and H. Spohn, Europhys. Lett. 8:219 (1989).
13. L.-H. Tang and H. Leschhorn, Phys. Rev. A 45:R8309 (1992); S. V. Buldyrev,

A.-L. Baraba� si, F. Caserta, S. Havlin, H. E. Stanley, and T. Vicsek, Phys. Rev. A 45:R8313
(1992).

14. J. Kerte� sz and D. Wolf, Phys. Rev. Lett. 62:2571 (1989).
15. U. Alon, M. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. Lett. 76:2710 (1996).
16. H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. Lett. 79:2710 (1997).
17. J. Krug and H. Spohn, Phys. Rev. A 38:4271 (1988).
18. P. L. Krapivsky and E. Ben-Naim, Phys. Rev. E 56:3788 (1997).
19. F. C. Frank, J. Cryst. Growth 22:233 (1974).
20. N. Goldenfeld, J. Phys. A: Math. Gen. 17:2807 (1984).
21. L. A. N. Amaral, A.-L. Baraba� si, and H. E. Stanley, Phys. Rev. Lett. 73:62 (1994).
22. J. Krug and H. Spohn, in Solids Far from Equilibrium, C. Godre� che, ed. (Cambridge

University Press, 1991).
23. J. J. Gonza� lez and K. W. Kehr, Macromolecules 11:996 (1978).
24. J. J. Gonza� lez, P. C. Hemmer, and J. S. Ho% ye, Chem. Phys. 3:228 (1974).
25. J. W. Evans, J. A. Bartz, and D. E. Sanders, Phys. Rev. A 34:1434 (1986).
26. S. R. Anderson and F. Family, Phys. Rev. A 38:4198 (1988).
27. D. E. Sanders and J. W. Evans, Phys. Rev. A 38:4186, (1988).
28. E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 56:6680 (1997).
29. D. J. Gates and M. Westcott, J. Stat. Phys. 81:681 (1995).

280 Helle� n et al.


